Dual Schubert Polynomials

Eric Nie Mentor: Pavel Galashin

Fifth Annual PRIMES Conference

May 17, 2015

ric Nie Dual Schubert Polynomials

< ロ > < 同 > < 回 > < 回 > .

э

Table of Contents

Nie Dual Schubert Polynomials

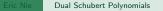
イロン イロン イヨン イヨン

э

Inversions

Definition

For a permutation ω , we define $\ell(\omega) = |\{(\omega(i), \omega(j) | i < j \text{ and } \omega(i) > \omega(j)\}|$, which is also known as the **number of inversions**.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inversions

Definition

For a permutation ω , we define $\ell(\omega) = |\{(\omega(i), \omega(j)|i < j \text{ and } \omega(i) > \omega(j)\}|$, which is also known as the **number of inversions**.

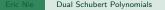
Examples:

- $\ell(123) = 0$
- $\ell(132) = 1$
- $\ell(213) = 1$
- $\ell(231) = 2$
- $\ell(312) = 2$
- $\ell(321) = 3$

< ∃ >

Definition

The **Lehmer code** of a permutation $\omega \in S_n$: $code(\omega) = (a_1, a_2, ..., a_n)$ where $a_i = |\{j|j > i \text{ and } \omega(i) > \omega(j)\}|$.



イロン 不同 とくほう イロン

Definition

The **Lehmer code** of a permutation $\omega \in S_n$: $code(\omega) = (a_1, a_2, ..., a_n)$ where $a_i = |\{j|j > i \text{ and } \omega(i) > \omega(j)\}|$.

Example

For $\omega = 2413$, we have $code(\omega) = (1, 2, 0, 0)$.

ric Nie Dual Schubert Polynomials

・ロト ・回ト ・ヨト ・ヨト

Definition

The **Lehmer code** of a permutation $\omega \in S_n$: $code(\omega) = (a_1, a_2, ..., a_n)$ where $a_i = |\{j|j > i \text{ and } \omega(i) > \omega(j)\}|$.

Example

For $\omega = 2413$, we have $\operatorname{code}(\omega) = (1, 2, 0, 0)$.

The sum of the a_i is $\ell(\omega)$.

イロト イポト イヨト イヨト

Definition

The **Lehmer code** of a permutation $\omega \in S_n$: $code(\omega) = (a_1, a_2, ..., a_n)$ where $a_i = |\{j|j > i \text{ and } \omega(i) > \omega(j)\}|$.

Example

For
$$\omega = 2413$$
, we have $\operatorname{code}(\omega) = (1, 2, 0, 0)$.

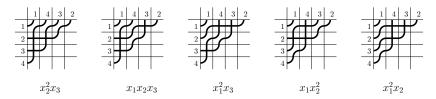
The sum of the a_i is $\ell(\omega)$.

Definition

We denote the permutation in S_n with the most inversions by $\omega_0 = (n, n-1, ..., 1)$.

イロン 不同 とくほう イロン

Pipe Dreams



Possible Pipe Dreams of 1432

・ロト ・回ト ・ヨト ・ヨト

э

Pipe Dreams

 $x_{2}^{2}x_{3}$

 $x_1 x_2 x_3$

 $x_1 x_2^2$

 $x_1^2 x_2$

Possible Pipe Dreams of 1432

 $x_1^2 x_2^2 x_3$

Not a pipe dream

- モト - モト

æ

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω} .

御 と く ヨ と く ヨ と

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω} .

Theorem (Billey-Jockusch-Stanley, 1993)

$$\mathfrak{S}_{\omega} = \sum_{D} \operatorname{weight}(D)$$

with D taken over all the possible pipe dreams of ω .

- 4 同 6 4 日 6 4 日 6

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω} .

Theorem (Billey-Jockusch-Stanley, 1993)

$$\mathfrak{S}_{\omega} = \sum_{D} \operatorname{weight}(D)$$

with D taken over all the possible pipe dreams of ω .

Possible Pipe Dreams of 1432

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

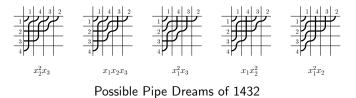
Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω} .

Theorem (Billey-Jockusch-Stanley, 1993)

$$\mathfrak{S}_{\omega} = \sum_{D} \operatorname{weight}(D)$$

with D taken over all the possible pipe dreams of ω .



$$\mathfrak{S}_{1432} = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

Definition

We define the **Schubert-Kostka matrix** K as the coefficient matrix of the Schubert polynomial.

$$\mathfrak{S}_{\omega} = \sum_{a \in \mathbb{N}^n} K_{\omega,a} x^a.$$

э

Definition

We define the **Schubert-Kostka matrix** K as the coefficient matrix of the Schubert polynomial.

$$\mathfrak{S}_{\omega} = \sum_{\mathbf{a} \in \mathbb{N}^n} K_{\omega, \mathbf{a}} x^{\mathbf{a}}.$$

Recall that:

$$\mathfrak{S}_{1432} = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Definition

We define the **Schubert-Kostka matrix** K as the coefficient matrix of the Schubert polynomial.

$$\mathfrak{S}_{\omega} = \sum_{a \in \mathbb{N}^n} K_{\omega,a} x^a.$$

Recall that:

$$\mathfrak{S}_{1432} = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

For $\omega = 1432$, we look at the entries of $K_{1432,a}$ for different *a*: • $a \in \{(0, 2, 1, 0), (1, 1, 1, 0), (2, 0, 1, 0), (1, 2, 0, 0), (2, 1, 0, 0)\}$ $\implies K_{1432,a} = 1.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

We define the **Schubert-Kostka matrix** K as the coefficient matrix of the Schubert polynomial.

$$\mathfrak{S}_{\omega} = \sum_{a \in \mathbb{N}^n} K_{\omega,a} x^a.$$

Recall that:

$$\mathfrak{S}_{1432} = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

For $\omega = 1432$, we look at the entries of $K_{1432,a}$ for different *a*: • $a \in \{(0, 2, 1, 0), (1, 1, 1, 0), (2, 0, 1, 0), (1, 2, 0, 0), (2, 1, 0, 0)\}$ $\implies K_{1432,a} = 1.$

• For any other a, we have $K_{1432,a} = 0$

Schubert-Kotska Matrix (continued)

Definition

Let K^{-1} be the inverse of the matrix K. It corresponds to the expansion of monomials in terms of Schubert polynomials

$$x^{a} = \sum_{\omega \in S_{n}} \mathcal{K}_{\omega,a}^{-1} \mathfrak{S}_{\omega}.$$

Schubert-Kotska Matrix (continued)

Definition

Let K^{-1} be the inverse of the matrix K. It corresponds to the expansion of monomials in terms of Schubert polynomials

$$x^{a} = \sum_{\omega \in S_{n}} \mathcal{K}_{\omega,a}^{-1} \mathfrak{S}_{\omega}.$$

Definition

By taking the dual basis, we can define the dual Schubert polynomials in the following way:

$$\mathfrak{D}_{\omega} = \sum_{\mathbf{a} \in \mathbb{N}^n} \mathcal{K}_{\omega,\mathbf{a}}^{-1} \mathcal{Y}^{(\mathbf{a})},$$

where the basis $\{y^{(a)} = \frac{y_1^{a_1}}{a_1!} \frac{y_2^{a_2}}{a_2!} \cdots\}$ is dual to the basis $\{x^a\}$.

Connection between Dual Schubert and Schubert polynomials (continued)

Lemma (Postnikov-Stanley, 2005)

For $\omega \in S_n$ and any $a \in \mathbb{N}^n$, we have

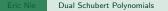
$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u\in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0\omega,u(
ho)-\mathsf{a}}$$

where $\rho = (n - 1, n - 2, \dots, 0) \in \mathbb{N}^n$.

伺 と く ヨ と く ヨ と

$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u\in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0\omega,u(
ho)-\mathsf{a}}$$

For example, for $\omega = 4123$ we have $\omega_0 \omega = 1432$.



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u\in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0\omega,u(
ho)-\mathsf{a}}$$

For example, for $\omega = 4123$ we have $\omega_0 \omega = 1432$. Recall that

 $u(\rho) - a \in \{0210, 1110, 2010, 1200, 2100\} \Longrightarrow K_{1432, u(\rho) - a} = 1.$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u\in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0\omega,u(
ho)-\mathsf{a}}$$

For example, for $\omega = 4123$ we have $\omega_0 \omega = 1432$. Recall that

 $u(\rho) - a \in \{0210, 1110, 2010, 1200, 2100\} \Longrightarrow K_{1432, u(\rho) - a} = 1.$

For a = 3000, $u(\rho) - a$ is nonnegative iff

 $u(\rho) - a \in \{0210, 0201, 0120, 0102, 0012, 0021\}$

$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u \in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0 \omega, u(
ho) - \mathsf{a}}$$

For example, for $\omega = 4123$ we have $\omega_0 \omega = 1432$. Recall that

 $u(\rho) - a \in \{0210, 1110, 2010, 1200, 2100\} \Longrightarrow K_{1432, u(\rho) - a} = 1.$

For a = 3000, $u(\rho) - a$ is nonnegative iff

 $u(\rho) - a \in \{0210, 0201, 0120, 0102, 0012, 0021\}$

The only intersection of these two sets is 0210 when u = id.

$$\mathcal{K}_{\mathsf{a},\omega}^{-1} = \sum_{u \in S_n} (-1)^{\ell(u)} \mathcal{K}_{\omega_0 \omega, u(\rho) - \mathsf{a}}$$

For example, for $\omega = 4123$ we have $\omega_0 \omega = 1432$. Recall that

 $u(\rho) - a \in \{0210, 1110, 2010, 1200, 2100\} \Longrightarrow K_{1432, u(\rho) - a} = 1.$

For a = 3000, $u(\rho) - a$ is nonnegative iff

 $u(\rho) - a \in \{0210, 0201, 0120, 0102, 0012, 0021\}$

The only intersection of these two sets is 0210 when u = id. So,

$$K_{3000,4123}^{-1} = 1.$$

Definition

A permutation ω is σ -avoiding if there is no subsequence of ω with the same relative ordering as σ .

- 4 同 6 4 日 6 4 日 6

Definition

A permutation ω is σ -avoiding if there is no subsequence of ω with the same relative ordering as σ .

For example, $\omega = 25431$ is 213-avoiding since for all i < j < k, the following does not hold: $\omega(j) < \omega(i) < \omega(k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A permutation ω is σ -avoiding if there is no subsequence of ω with the same relative ordering as σ .

For example, $\omega = 25431$ is 213-avoiding since for all i < j < k, the following does not hold: $\omega(j) < \omega(i) < \omega(k)$.

An example of a non-213-avoiding permutation is $\omega = 23415$. The subsequence 215 has the same relative order as 213.

伺 ト く ヨ ト く ヨ ト

Definition

A permutation ω is σ -avoiding if there is no subsequence of ω with the same relative ordering as σ .

For example, $\omega = 25431$ is 213-avoiding since for all i < j < k, the following does not hold: $\omega(j) < \omega(i) < \omega(k)$.

An example of a non-213-avoiding permutation is $\omega = 23415$. The subsequence 215 has the same relative order as 213.

Proposition

For each $\sigma \in S_3$, there are C_n such permutations where C_n is the *n*-th Catalan number.

Proposition

For a 132-avoiding permutation, the Schubert polynomial is a single monomial $x^{code(w)}$.

イロン 不同 とくほう イロン

Proposition

For a 132-avoiding permutation, the Schubert polynomial is a single monomial $x^{code(w)}$.

Corollary (Postnikov-Stanley, 2005)

For a 312-avoiding permutation $w \in S_n$ with $c = code(\omega_0 \omega)$, and an arbitrary $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$, we have

$$\mathcal{K}_{a,w}^{-1} = \begin{cases} (-1)^{\ell(u)} & \text{if } a + c = u(\rho), \text{ for some } u \in S_n, \\ 0 & \text{otherwise.} \end{cases}$$

イロン 不同 とくほう イロン

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_0 \omega \omega_0$ to be interchanged. When we replace ω by $\omega_0 \omega \omega_0$, the permutations are mapped from σ -avoiding to $\omega_0 \sigma \omega_0$ -avoiding permutations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_0 \omega \omega_0$ to be interchanged. When we replace ω by $\omega_0 \omega \omega_0$, the permutations are mapped from σ -avoiding to $\omega_0 \sigma \omega_0$ -avoiding permutations.

Example	
For $\sigma \in S_3$:	
• 213 \leftrightarrow 132	
• 231 \leftrightarrow 312	
• $321 \leftrightarrow 321$	
• 123 \leftrightarrow 123	

イロト 不得 とくほ とくほう

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_0 \omega \omega_0$ to be interchanged. When we replace ω by $\omega_0 \omega \omega_0$, the permutations are mapped from σ -avoiding to $\omega_0 \sigma \omega_0$ -avoiding permutations.

Example	
For $\sigma \in S_3$:	
• $213 \leftrightarrow 132$	
• 231 \leftrightarrow 312	
• $321 \leftrightarrow 321$	
• 123 \leftrightarrow 123	

This gives a way to compute the entries of the matrix for a 231-avoiding permutation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary (Postnikov-Stanley, 2005)

For a 231-avoiding permutation $w \in S_n$ with $c = code(\omega \omega_0)$, and an arbitrary $a = (a_n, a_{n-1} \dots, a_1) \in \mathbb{N}^n$, we have

$$\mathcal{K}_{a,w}^{-1} = \begin{cases} (-1)^{\ell(u)+|a|} & \text{if } a+c = u(\rho), \text{ for some } u \in \mathcal{S}_n, \\ 0 & \text{otherwise.} \end{cases}$$

(4月) (4日) (4日)

Table of Contents

Nie Dual Schubert Polynomials

イロン イロン イヨン イヨン

э

Recall that for ω which are 231- or 312-avoiding, the entries of $K_{a,\omega}^{-1}$ are equal to -1, 0, or +1.

Proposition

There exists an $\omega = 645231 \in S_6$ that is 123-avoiding, 213-avoiding, and 132-avoiding such that

$$K_{421042,\omega}^{-1} = -2.$$

Recall that for ω which are 231- or 312-avoiding, the entries of $K_{a,\omega}^{-1}$ are equal to -1, 0, or +1.

Proposition

There exists an $\omega = 645231 \in S_6$ that is 123-avoiding, 213-avoiding, and 132-avoiding such that

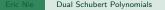
$$K_{421042,\omega}^{-1} = -2.$$

There is only one case left to check which is 321-avoiding permutations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture

For a 321-avoiding permutation $\omega \in S_n$, $K_{a,\omega}^{-1}$ is equal to -1,0 or 1 for all $a \in \mathbb{N}^n$.



▲ □ ► < □ ►</p>

Conjecture

For a 321-avoiding permutation $\omega \in S_n$, $K_{a,\omega}^{-1}$ is equal to -1,0 or 1 for all $a \in \mathbb{N}^n$.

Lemma

For a 321-avoiding permutation $\omega \in S_n$ we have that $K_{a,\omega}^{-1} = 0$ for $a >_{lex} \operatorname{code}(\omega)$ where $>_{lex}$ is the lexicographic order.

(人間) (人) (人) (人) (人) (人)

Conjecture

For a 321-avoiding permutation $\omega \in S_n$, $K_{a,\omega}^{-1}$ is equal to -1,0 or 1 for all $a \in \mathbb{N}^n$.

Lemma

For a 321-avoiding permutation $\omega \in S_n$ we have that $K_{a,\omega}^{-1} = 0$ for $a >_{lex} \operatorname{code}(\omega)$ where $>_{lex}$ is the lexicographic order.

Example

$$K_{1200,2341}^{-1} = 0$$

Since, $1200 >_{lex} code(\omega) = 1110$.

Dominance Order

Definition

For $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$, $a \ge_D b$ if and only if $a_1 + a_2 + \cdots + a_k \ge b_1 + b_2 + \cdots + b_k$ for all $k \ge 1$.

ヘロト ヘヨト ヘヨト ヘヨト

Dominance Order

Definition

For
$$a = (a_1, a_2, ..., a_n)$$
 and $b = (b_1, b_2, ..., b_n)$, $a \ge_D b$ if and only if $a_1 + a_2 + \cdots + a_k \ge b_1 + b_2 + \cdots + b_k$ for all $k \ge 1$.

Lemma

The coefficient can be nonzero only if $code(\omega) \ge_D a \ge_D code(\omega_0 \omega \omega_0)$.

Example

For $\omega = 2341$, we have $\operatorname{code}(\omega) = 1110$. For a = 0300, $a <_{lex} \operatorname{code}(\omega)$, but we do not have $a <_D \operatorname{code}(\omega)$. So,

$$K_{a,\omega}^{-1}=0.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Future Research

• Find a formula for Grassmannian permutations which form a subset of 321-avoiding permutations.

御 と く ヨ と く ヨ と

Future Research

- Find a formula for Grassmannian permutations which form a subset of 321-avoiding permutations.
- Prove the conjecture above: for ω ∈ S_n, K⁻¹_{a,ω} is equal to -1, 0, or 1 for all 321-avoiding permutations

Acknowledgements

I would like to acknowledge the following people:

- Prof. Alexander Postnikov
- My mentor Pavel Galashin
- The MIT PRIMES Program
- My parents