Dual Schubert Polynomials

Eric Nie
Mentor: Pavel Galashin

Fifth Annual PRIMES Conference
May 17, 2015

Table of Contents

(1) Background
(2) Results

Inversions

Definition

For a permutation ω, we define $\ell(\omega)=\mid\{(\omega(i), \omega(j) \mid i<j$ and $\omega(i)>\omega(j)\} \mid$, which is also known as the number of inversions.

Inversions

Definition

For a permutation ω, we define $\ell(\omega)=\mid\{(\omega(i), \omega(j) \mid i<j$ and $\omega(i)>\omega(j)\} \mid$, which is also known as the number of inversions.

Examples:

- $\ell(123)=0$
- $\ell(132)=1$
- $\ell(213)=1$
- $\ell(231)=2$
- $\ell(312)=2$
- $\ell(321)=3$

Lehmer Code

Definition

The Lehmer code of a permutation $\omega \in S_{n}: \operatorname{code}(\omega)=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\mid\{j \mid j>i$ and $\omega(i)>\omega(j)\} \mid$.

Lehmer Code

Definition

The Lehmer code of a permutation $\omega \in S_{n}: \operatorname{code}(\omega)=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\mid\{j \mid j>i$ and $\omega(i)>\omega(j)\} \mid$.

Example

For $\omega=2413$, we have $\operatorname{code}(\omega)=(1,2,0,0)$.

Lehmer Code

Definition

The Lehmer code of a permutation $\omega \in S_{n}: \operatorname{code}(\omega)=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\mid\{j \mid j>i$ and $\omega(i)>\omega(j)\} \mid$.

Example

For $\omega=2413$, we have $\operatorname{code}(\omega)=(1,2,0,0)$.
The sum of the a_{i} is $\ell(\omega)$.

Lehmer Code

Definition

The Lehmer code of a permutation $\omega \in S_{n}: \operatorname{code}(\omega)=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\mid\{j \mid j>i$ and $\omega(i)>\omega(j)\} \mid$.

Example

For $\omega=2413$, we have $\operatorname{code}(\omega)=(1,2,0,0)$.
The sum of the a_{i} is $\ell(\omega)$.

Definition

We denote the permutation in S_{n} with the most inversions by $\omega_{0}=(n, n-1, \ldots, 1)$.

Pipe Dreams

$x_{2}^{2} x_{3}$

$x_{1} x_{2} x_{3}$

$x_{1}^{2} x_{3}$

$x_{1} x_{2}^{2}$

$x_{1}^{2} x_{2}$

Possible Pipe Dreams of 1432

Pipe Dreams

$x_{2}^{2} x_{3}$

$x_{1} x_{2} x_{3}$

$x_{1}^{2} x_{3}$

$x_{1} x_{2}^{2}$

$x_{1}^{2} x_{2}$

Possible Pipe Dreams of 1432

$$
x_{1}^{2} x_{2}^{2} x_{3}
$$

Not a pipe dream

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω}.

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω}.
Theorem (Billey-Jockusch-Stanley, 1993)

$$
\mathfrak{S}_{\omega}=\sum_{D} \text { weight }(D)
$$

with D taken over all the possible pipe dreams of ω.

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω}.

Theorem (Billey-Jockusch-Stanley, 1993)

$$
\mathfrak{S}_{\omega}=\sum_{D} \operatorname{weight}(D)
$$

with D taken over all the possible pipe dreams of ω.

$x_{2}^{2} x_{3}$

$x_{1} x_{2} x_{3}$

$x_{1}^{2} x_{3}$

$x_{1} x_{2}^{2}$

$x_{1}^{2} x_{2}$

Possible Pipe Dreams of 1432

Schubert Polynomials

We denote the Schubert polynomial of a permutation ω by \mathfrak{S}_{ω}.

Theorem (Billey-Jockusch-Stanley, 1993)

$$
\mathfrak{S}_{\omega}=\sum_{D} \operatorname{weight}(D)
$$

with D taken over all the possible pipe dreams of ω.

$x_{2}^{2} x_{3}$

$x_{1} x_{2} x_{3}$

$x_{1}^{2} x_{3}$

$x_{1} x_{2}^{2}$

$x_{1}^{2} x_{2}$

Possible Pipe Dreams of 1432

$$
\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2}
$$

Schubert-Kostka Matrix

Definition

We define the Schubert-Kostka matrix K as the coefficient matrix of the Schubert polynomial.

$$
\mathfrak{S}_{\omega}=\sum_{a \in \mathbb{N}^{n}} K_{\omega, \mathrm{a}} x^{a}
$$

Schubert-Kostka Matrix

Definition

We define the Schubert-Kostka matrix K as the coefficient matrix of the Schubert polynomial.

$$
\mathfrak{S}_{\omega}=\sum_{a \in \mathbb{N}^{n}} K_{\omega, a} x^{a}
$$

Recall that:

$$
\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2}
$$

Schubert-Kostka Matrix

Definition

We define the Schubert-Kostka matrix K as the coefficient matrix of the Schubert polynomial.

$$
\mathfrak{S}_{\omega}=\sum_{a \in \mathbb{N}^{n}} K_{\omega, a} x^{a}
$$

Recall that:

$$
\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2} .
$$

For $\omega=1432$, we look at the entries of $K_{1432, a}$ for different a : - $a \in\{(0,2,1,0),(1,1,1,0),(2,0,1,0),(1,2,0,0),(2,1,0,0)\}$

$$
\Longrightarrow K_{1432, a}=1 .
$$

Schubert-Kostka Matrix

Definition

We define the Schubert-Kostka matrix K as the coefficient matrix of the Schubert polynomial.

$$
\mathfrak{S}_{\omega}=\sum_{a \in \mathbb{N}^{n}} K_{\omega, a} x^{a}
$$

Recall that:

$$
\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2} .
$$

For $\omega=1432$, we look at the entries of $K_{1432, a}$ for different a :

- $a \in\{(0,2,1,0),(1,1,1,0),(2,0,1,0),(1,2,0,0),(2,1,0,0)\}$

$$
\Longrightarrow K_{1432, a}=1 .
$$

- For any other a, we have $K_{1432, a}=0$

Schubert-Kotska Matrix (continued)

Definition

Let K^{-1} be the inverse of the matrix K. It corresponds to the expansion of monomials in terms of Schubert polynomials

$$
x^{a}=\sum_{\omega \in S_{n}} K_{\omega, a}^{-1} \mathfrak{S}_{\omega}
$$

Schubert-Kotska Matrix (continued)

Definition

Let K^{-1} be the inverse of the matrix K. It corresponds to the expansion of monomials in terms of Schubert polynomials

$$
x^{a}=\sum_{\omega \in S_{n}} K_{\omega, a}^{-1} \mathfrak{S}_{\omega}
$$

Definition

By taking the dual basis, we can define the dual Schubert polynomials in the following way:

$$
\mathfrak{D}_{\omega}=\sum_{a \in \mathbb{N}^{n}} K_{\omega, a}^{-1} y^{(a)}
$$

where the basis $\left\{y^{(a)}=\frac{y_{1}^{a_{1}}}{a_{1}!}!\frac{y_{2}^{a_{2}}}{a_{2}!} \cdots\right\}$ is dual to the basis $\left\{x^{a}\right\}$.

Connection between Dual Schubert and Schubert polynomials (continued)

Lemma (Postnikov-Stanley, 2005)
For $\omega \in S_{n}$ and any $a \in \mathbb{N}^{n}$, we have

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

where $\rho=(n-1, n-2, \ldots, 0) \in \mathbb{N}^{n}$.

Connection between Dual Schubert and Schubert polynomials (example)

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

For example, for $\omega=4123$ we have $\omega_{0} \omega=1432$.

Connection between Dual Schubert and Schubert polynomials (example)

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

For example, for $\omega=4123$ we have $\omega_{0} \omega=1432$. Recall that

$$
u(\rho)-a \in\{0210,1110,2010,1200,2100\} \Longrightarrow K_{1432, u(\rho)-a}=1
$$

Connection between Dual Schubert and Schubert polynomials (example)

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

For example, for $\omega=4123$ we have $\omega_{0} \omega=1432$. Recall that

$$
u(\rho)-a \in\{0210,1110,2010,1200,2100\} \Longrightarrow K_{1432, u(\rho)-a}=1
$$

For $a=3000, u(\rho)-a$ is nonnegative iff

$$
u(\rho)-a \in\{0210,0201,0120,0102,0012,0021\}
$$

Connection between Dual Schubert and Schubert polynomials (example)

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

For example, for $\omega=4123$ we have $\omega_{0} \omega=1432$. Recall that

$$
u(\rho)-a \in\{0210,1110,2010,1200,2100\} \Longrightarrow K_{1432, u(\rho)-a}=1
$$

For $a=3000, u(\rho)-a$ is nonnegative iff

$$
u(\rho)-a \in\{0210,0201,0120,0102,0012,0021\}
$$

The only intersection of these two sets is 0210 when $u=i d$.

Connection between Dual Schubert and Schubert polynomials (example)

$$
K_{a, \omega}^{-1}=\sum_{u \in S_{n}}(-1)^{\ell(u)} K_{\omega_{0} \omega, u(\rho)-a}
$$

For example, for $\omega=4123$ we have $\omega_{0} \omega=1432$. Recall that

$$
u(\rho)-a \in\{0210,1110,2010,1200,2100\} \Longrightarrow K_{1432, u(\rho)-a}=1
$$

For $a=3000, u(\rho)-a$ is nonnegative iff

$$
u(\rho)-a \in\{0210,0201,0120,0102,0012,0021\}
$$

The only intersection of these two sets is 0210 when $u=i d$. So,

$$
K_{3000,4123}^{-1}=1
$$

Pattern-avoiding Permutations

Definition

A permutation ω is σ-avoiding if there is no subsequence of ω with the same relative ordering as σ.

Pattern-avoiding Permutations

Definition

A permutation ω is σ-avoiding if there is no subsequence of ω with the same relative ordering as σ.

For example, $\omega=25431$ is 213 -avoiding since for all $i<j<k$, the following does not hold: $\omega(j)<\omega(i)<\omega(k)$.

Pattern-avoiding Permutations

Definition

A permutation ω is σ-avoiding if there is no subsequence of ω with the same relative ordering as σ.

For example, $\omega=25431$ is 213 -avoiding since for all $i<j<k$, the following does not hold: $\omega(j)<\omega(i)<\omega(k)$.
An example of a non-213-avoiding permutation is $\omega=23415$. The subsequence 215 has the same relative order as 213.

Pattern-avoiding Permutations

Definition

A permutation ω is σ-avoiding if there is no subsequence of ω with the same relative ordering as σ.

For example, $\omega=25431$ is 213 -avoiding since for all $i<j<k$, the following does not hold: $\omega(j)<\omega(i)<\omega(k)$.
An example of a non-213-avoiding permutation is $\omega=23415$. The subsequence 215 has the same relative order as 213.

Proposition

For each $\sigma \in S_{3}$, there are C_{n} such permutations where C_{n} is the n-th Catalan number.

312-avoiding permutations

Proposition

For a 132-avoiding permutation, the Schubert polynomial is a single monomial $x^{\text {code }(w)}$.

312-avoiding permutations

Proposition

For a 132-avoiding permutation, the Schubert polynomial is a single monomial $x^{\text {code }(w)}$.

Corollary (Postnikov-Stanley, 2005)

For a 312-avoiding permutation $w \in S_{n}$ with $c=\operatorname{code}\left(\omega_{0} \omega\right)$, and an arbitrary $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$, we have

$$
K_{a, w}^{-1}=\left\{\begin{array}{cl}
(-1)^{\ell(u)} & \text { if } a+c=u(\rho), \text { for some } u \in S_{n} \\
0 & \text { otherwise } .
\end{array}\right.
$$

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_{0} \omega \omega_{0}$ to be interchanged. When we replace ω by $\omega_{0} \omega \omega_{0}$, the permutations are mapped from σ-avoiding to $\omega_{0} \sigma \omega_{0}$-avoiding permutations.

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_{0} \omega \omega_{0}$ to be interchanged. When we replace ω by $\omega_{0} \omega \omega_{0}$, the permutations are mapped from σ-avoiding to $\omega_{0} \sigma \omega_{0}$-avoiding permutations.

Example

For $\sigma \in S_{3}$:

- $213 \leftrightarrow 132$
- $231 \leftrightarrow 312$
- $321 \leftrightarrow 321$
- $123 \leftrightarrow 123$

Symmetry of K^{-1}

The matrix K^{-1} has a certain symmetry that allows ω and $\omega_{0} \omega \omega_{0}$ to be interchanged. When we replace ω by $\omega_{0} \omega \omega_{0}$, the permutations are mapped from σ-avoiding to $\omega_{0} \sigma \omega_{0}$-avoiding permutations.

Example

For $\sigma \in S_{3}$:

- $213 \leftrightarrow 132$
- $231 \leftrightarrow 312$
- $321 \leftrightarrow 321$
- $123 \leftrightarrow 123$

This gives a way to compute the entries of the matrix for a 231-avoiding permutation.

231-avoiding permutations

Corollary (Postnikov-Stanley, 2005)

For a 231-avoiding permutation $w \in S_{n}$ with $c=\operatorname{code}\left(\omega \omega_{0}\right)$, and an arbitrary $a=\left(a_{n}, a_{n-1} \ldots, a_{1}\right) \in \mathbb{N}^{n}$, we have

$$
K_{a, w}^{-1}=\left\{\begin{array}{cl}
(-1)^{\ell(u)+|a|} & \text { if } a+c=u(\rho), \text { for some } u \in S_{n} \\
0 & \text { otherwise } .
\end{array}\right.
$$

Table of Contents

(1) Background

(2) Results

Entries of $K_{a, w}^{-1}$

Recall that for ω which are 231- or 312-avoiding, the entries of $K_{a, \omega}^{-1}$ are equal to $-1,0$, or +1 .

Proposition

There exists an $\omega=645231 \in S_{6}$ that is 123 -avoiding, 213-avoiding, and 132-avoiding such that

$$
K_{421042, \omega}^{-1}=-2 .
$$

Entries of $K_{a, w}^{-1}$

Recall that for ω which are 231- or 312-avoiding, the entries of $K_{a, \omega}^{-1}$ are equal to $-1,0$, or +1 .

Proposition

There exists an $\omega=645231 \in S_{6}$ that is 123 -avoiding, 213-avoiding, and 132-avoiding such that

$$
K_{421042, \omega}^{-1}=-2 .
$$

There is only one case left to check which is 321-avoiding permutations.

321-avoiding permutations

Conjecture

For a 321-avoiding permutation $\omega \in S_{n}, K_{a, \omega}^{-1}$ is equal to $-1,0$ or 1 for all $a \in \mathbb{N}^{n}$.

321-avoiding permutations

Conjecture

For a 321-avoiding permutation $\omega \in S_{n}, K_{a, \omega}^{-1}$ is equal to $-1,0$ or 1 for all $a \in \mathbb{N}^{n}$.

Lemma

For a 321-avoiding permutation $\omega \in S_{n}$ we have that $K_{a, \omega}^{-1}=0$ for $a>_{\text {lex }} \operatorname{code}(\omega)$ where $>_{\text {lex }}$ is the lexicographic order.

321-avoiding permutations

Conjecture

For a 321-avoiding permutation $\omega \in S_{n}, K_{a, \omega}^{-1}$ is equal to $-1,0$ or 1 for all $a \in \mathbb{N}^{n}$.

Lemma

For a 321-avoiding permutation $\omega \in S_{n}$ we have that $K_{a, \omega}^{-1}=0$ for a $>_{\text {lex }} \operatorname{code}(\omega)$ where $>_{\text {lex }}$ is the lexicographic order.

Example

$$
K_{1200,2341}^{-1}=0
$$

Since, $1200>_{\text {lex }} \operatorname{code}(\omega)=1110$.

Dominance Order

Definition

For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right), a \geq_{D} b$ if and only if $a_{1}+a_{2}+\cdots+a_{k} \geq b_{1}+b_{2}+\cdots+b_{k}$ for all $k \geq 1$.

Dominance Order

Definition

For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right), a \geq_{D} b$ if and only if $a_{1}+a_{2}+\cdots+a_{k} \geq b_{1}+b_{2}+\cdots+b_{k}$ for all $k \geq 1$.

Lemma

The coefficient can be nonzero only if $\operatorname{code}(\omega) \geq_{D} a \geq_{D} \operatorname{code}\left(\omega_{0} \omega \omega_{0}\right)$.

Example

For $\omega=2341$, we have $\operatorname{code}(\omega)=1110$.
For $a=0300, a<_{\text {lex }} \operatorname{code}(\omega)$, but we do not have $a<_{D} \operatorname{code}(\omega)$. So,

$$
K_{a, \omega}^{-1}=0 .
$$

Future Research

- Find a formula for Grassmannian permutations which form a subset of 321-avoiding permutations.

Future Research

- Find a formula for Grassmannian permutations which form a subset of 321-avoiding permutations.
- Prove the conjecture above: for $\omega \in S_{n}, K_{a, \omega}^{-1}$ is equal to $-1,0$, or 1 for all 321-avoiding permutations

Acknowledgements

I would like to acknowledge the following people:

- Prof. Alexander Postnikov
- My mentor Pavel Galashin
- The MIT PRIMES Program
- My parents

